4.1 EXERCISES

HCMEWORK: KEY

- () = WORKED-OUT SOLUTIONS on p. WS4 for Exs. 9, 15, and 41
- = STANDARDIZED TEST PRACTICE Exs. 7, 20, 31, 43, and 51

SKILL PRACTICE

VOCABULARY Match the triangle description with the most specific name.

1. Angle measures: 30°, 60°, 90° C

2. Side lengths: 2 cm, 2 cm, 2 cm E 3. Angle measures: 60°, 60°, 60° F

4. Side lengths: 6 m, 3 m, 6 m A

5. Side lengths: 5 ft, 7 ft, 9 ft B

6. Angle measures: 20°, 125°, 35° D

A. Isosceles

B. Scalene

C. Right

D. Obtuse

E. Equilateral

F. Equiangular

*** WRITING** Can a right triangle also be obtuse? *Explain* why or why not. No; in a right triangle, the other two angles are complementary so they are both less than 90°. CLASSIFYING TRIANGLES Copy the triangle and measure its angles. Classify the triangle by its sides and by its angles.

EXAMPLE 1 on p. 217 for Exs. 8-10

EXAMPLE 2

for Exs. 11-13

EXAMPLE 3

for Exs. 14-19

EXAMPLE 4

on p. 220

for Ex. 20

оп р. 219

on p. 218

scalene, obtuse

COORDINATE PLANE A triangle has the given vertices. Graph the triangle and classify it by its sides. Then determine if it is a right triangle. 11-13. See margin for art.

11. A(2,3), B(6,3), C(2,7)isosceles; right triangle **12.** A(3, 3), B(6, 9), C(6, -3)isosceles; not a right triangle

13. A(1, 9), B(4, 8), C(2, 5)scalene; not a right triangle

FINDING ANGLE MEASURES Find the value of x. Then classify the triangle by its angles.

ALGEBRA Find the measure of the exterior angle shown.

17.

20. ★ SHORT RESPONSE Explain how to use the Corollary to the Triangle Sum Theorem to find the measure of each angle.

Set 3x + 2x = 90 and solve for x. Then find the values of 3x and 2x.

4.1 Apply Triangle Sum Properties

221

Assignment Guide

🚨 Answer Transparencies available for all exercises

Day 1: EP p. 896 Exs. 24-29 pp. 221-224

Exs. 1-7, 9-19 odd, 21-29, 40-49 54, 57, 60, 61

Average:

Day 1: pp. 221–224 Exs. 1-7. 8-26 even. 27-34. 40-52 55.58.62

Advanced:

Day 1: pp. 221-224 Exs. 1-7, 10, 13, 16, 19, 20, 27, 28, 31-40*, 42-53*, 56, 59, 63

Block:

pp. 221-224

Exs. 1-7, 8-26 even, 27-34, 40-52, 55, 58, 62 (with 4.2)

Differentiated Instruction

See Differentiated Instruction Resources for suggestions on addressing the needs of a diverse classroom.

Homework Check

For a quick check of student understanding of key concepts, go over the following exercises:

Basic: 9, 11, 17, 19, 40 Average: 8, 12, 18, 20, 40 Advanced: 10, 13, 19, 20, 40

Extra Practice

- Student Edition, p. 902
- Chapter Resource Book: Practice levels A, B, C

Practice Worksheet

An easily-readable reduced practice page (with answers) for this lesson can be found on p. 214C.

Avoiding Common Errors

Exercises 17-18 Students may add the measure of the exterior angle and the measures of the two nonadjacent interior angles and set the sum equal to 180°. Discuss the difference between the Triangle Sum Theorem and the Exterior Angle Theorem to help them understand why that is not a correct procedure.

Study Strategy

Exercises 32-33, 35 If students have difficulty with these exercises, call attention to the fact that each diagram is marked to show a pair of parallel segments.

South Charles (Sept. 6) In the South

SERVENIES OF TO TO THE SWEWING

THE REPORT OF THE PARTY OF THE

Coloned a dop of assets wit

vienis valtūja kadas koja mota

หลุด ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ.

ANGLE RELATIONSHIPS Find the measure of the numbered angle.

29. Isosceles

the third side

is congruent

so if $\triangle ABC$ is

equilateral, then

it is isosceles as

30. The measure

of the exterior

angle is equal

to the sum of

angles; $m\angle 1 = 80^{\circ} +$

 $50^{\circ} = 130^{\circ}$. 38. No. Sample

answer: In a

right triangle,

the two acute angles are

So, one of the acute angle

measures can

be as small as

desired, while the other angle measure is less than 90°. The

largest angle is the right angle, which measures 90°, so the

triangle does not need to be

39a. Sample

obtuse.

C

complementary.

the measures of the two non-

adjacent interior

does not

guarantee

to the two congruent sides:

well.

22. ∠2 130°

21. ∠ I 50° 23. ∠3 50°

24. ∠4 130°

25. ∠5 40°

26. ∠6 30°

- 27. ALGEBRA In $\triangle PQR$, $\angle P \cong \angle R$ and the measure of $\angle Q$ is twice the measure of $\angle R$. Find the measure of each angle. $m \angle P = 45^\circ$, $m \angle Q = 90^\circ$, $m \angle R = 45^\circ$
- 28. ALGEBRA In $\triangle EFG$, $m \angle F = 3(m \angle G)$, and $m \angle E = m \angle F 30^\circ$. Find the measure of each angle. $m \angle E = 60^{\circ}$, $m \angle F = 90^{\circ}$, $m \angle G = 30^{\circ}$

ERROR ANALYSIS In Exercises 29 and 30, describe and correct the error.

29.

All equilateral triangles are also isosceles. So, if ABC is isosceles, then it is equilateral as well.

30. $m \angle 1 + 80^{\circ} + 50^{\circ} = 180^{\circ}$

- 31. * MULTIPLE CHOICE Which of the following is not possible? B
 - (A) An acute scalene triangle
- B A triangle with two acute exterior angles
- (C) An obtuse isosceles triangle
- (D) An equiangular acute triangle
- ALGEBRA In Exercises 32–37, find the values of x and y.

- 38. VISUALIZATION Is there an angle measure that is so small that any triangle with that angle measure will be an obtuse triangle? Explain.
- **39. CHALLENGE** Suppose you have the equations y = ax + b, y = cx + d, and y = ex + f.
 - a. When will these three lines form a triangle?
 - **b.** Let c = 1, d = 2, e = 4, and f = -7. Find values of a and b so that no triangle is formed by the three equations. Sample answer: 0, 5
 - **c.** Draw the triangle formed when $a = \frac{4}{3}, b = \frac{1}{3}, c = -\frac{4}{3}, d = \frac{41}{3}, e = 0$, and f = -1. Then classify the triangle by its sides. See margin for art; isosceles.

answer: They will always form a triangle unless they intersect in one point, or unless at least two lines are parallel.

> = WORKED-OUT SOLUTIONS on p. WS1

= STANDARDIZED TEST PRACTICE

222

PROBLEM SOLVING

EXAMPLE 1 A on p. 217 for Ex. 40

41. 2 in.; 60°; in an equilateral triangle all sides have the same length $\left(\frac{6}{3}\right)$. In an equiangular triangle the angles always

measure 60°.

40. THEATER Three people are standing on a stage. The distances between the three people are shown in the diagram. Classify the triangle formed by its sides. Then copy the triangle, measure the angles, and classify the triangle by its angles. scalene; acute

@HomeTutor for problem solving help at classzone.com

KALEIDOSCOPES You are making a kaleidoscope. The directions state that you are to arrange three pieces of reflective mylar in an equilateral and equiangular triangle. You must cut three strips from a piece of mylar 6 inches wide. What are the side lengths of the triangle used to form the kaleidoscope? What are the measures of the angles? Explain.

@Homefutor of for problem solving help at classzone.com

- 42. SCULPTURE You are bending a strip of metal into an isosceles triangle for a sculpture. The strip of metal is 20 inches long. The first bend is made 6 inches from one end. Describe two ways you could complete the triangle. Bend the strip again at 7 inches or 8 inches from the other end.
- 43. ★ MULTIPLE CHOICE Which inequality describes the possible measures of an angle of a triangle? C

(A) $0^{\circ} \le x^{\circ} \le 180^{\circ}$

(B) $0^{\circ} \le x^{\circ} < 180^{\circ}$

(C) $0^{\circ} < x^{\circ} < 180^{\circ}$

(D) $0^{\circ} < x^{\circ} \le 180^{\circ}$

SLING CHAIRS The brace of a sling chair forms a triangle with the seat and legs of the chair. Suppose $m\angle 2 = 50^{\circ}$ and $m\angle 3 = 65^{\circ}$.

44. Find $m \angle 6$. **115°**

45. Find *m*∠5. 115°

46. Find $m \angle 1$. **130°**

В

47. Find $m \angle 4$. 65°

b. Find the measure of each angle. 40°, 100°, 40°

c. Classify the triangle by its angles. obtuse

50. PROVING THEOREM 4.2 Prove the Exterior Angle Theorem. (Hint: Find two equations involving $m \angle ACB$.) See margin.

4.1 Apply Triangle Sum Properties

Mathematical Reasoning

Exercise 42 Have students relate the two ways of completing the triangle to the definition of an isosceles triangle.

48. Statements (Reasons)

- 1. △ ABC is a right triangle. (Given)
- 2. $m \angle C = 90^{\circ}$ (Definition of right angle)
- $3. \, m \angle A + m \angle B + m \angle C = 180^{\circ}$ (Triangle Sum Theorem)
- $4. \, m \angle A + m \angle B + 90^{\circ} = 180^{\circ}$ (Substitution Property of Equality)
- $5. m \angle A + m \angle B = 90^{\circ}$ (Subtraction Property of Equality)
- 6. $\angle A$ and $\angle B$ are complementary. (Definition of complementary angles)

50. Statements (Reasons)

- $1. m \angle ACB + m \angle BCD = 180^{\circ}$ (Linear Pair Postulate and definition of supplementary angles)
- $2. m \angle A + m \angle B + m \angle ACB = 180'$ (Triangle Sum Theorem)
- $3. m \angle ACB + m \angle BCD = m \angle A +$ $m \angle B + m \angle ACB$ (Transitive Property of Equality)
- $4. \, m \angle BCD = m \angle A + m \angle B$ (Subtraction Property of Equality)

GASSESSAND

Daily Homework Quiz Transparency Available

Graph △ ABC with vertices
 A(0, 6), B(-4, -1), and C(4, -1).
 Classify it by its sides. Then determine if it is a right triangle.
 isosceles; not a right triangle

 Find x. Then classify the triangle by its angles. 22; acute

3. Find the measure of the exterior angle shown. 104°

4. Find x and v. 82. 58

Available at classzone.com

Diagnosis/Remediation

- Practice A, B, C in Chapter Resource Book
- Study Guide in Chapter Resource Book
- Practice Workbook
- @HomeTutor

Challenge

Additional challenge is available in the Chapter Resource Book

53. See Additional Answers beginning on p. AA1.

51. Sample answer: They both reasoned correctly but their initial plan was incorrect. The measure of the exterior angle should be 150°.

51. \star EXTENDED RESPONSE The figure below shows an initial plan for a triangular flower bed that Mary and Tom plan to build along a fence. They are discussing what the measure of $\angle 1$ should be.

Did Mary and Tom both reason correctly? If not, who made a mistake and what mistake was made? If they did both reason correctly, what can you conclude about their initial plan? *Explain*.

- 52. ALGEBRA $\triangle ABC$ is isosceles. AB = x and BC = 2x 4.
 - a. Find two possible values for x if the perimeter of $\triangle ABC$ is 32. 8,9
 - **b.** How many possible values are there for x if the perimeter of $\triangle ABC$ is 12? one value

53. CHALLENGE Use the diagram to write a proof of the Triangle Sum Theorem. Your proof should be different than the proof of the Triangle Sum Theorem on page 219.

See margin.

MIXED REVIEW

 $\angle A$ and $\angle B$ are complementary. Find $m \angle A$ and $m \angle B$. (p. 35)

54.
$$m \angle A = (3x + 16)^{\circ}$$
 55
 $m \angle B = (4x - 3)^{\circ}$ 49°, 41°

55.
$$m \angle A = (4x - 2)^{\circ}$$

 $m \angle B = (7x + 4)^{\circ}$ 30°, 60°

56.
$$m \angle A = (3x + 4)^{\circ}$$

 $m \angle B = (2x + 6)^{\circ}$ 52°, 38°

Mar

191**66**1.0 310111.1 15-14.14.1

9.0

PREVIEW

Prepare for Lesson 4.2 in Exs. 57-59. Each figure is a regular polygon. Find the value of x. (p. 42)

58. 6x + 1

 $\begin{array}{c|c}
 & 2x - 5 \\
\hline
 & x + 2
\end{array}$

60. Use the Symmetric Property of Congruence to complete the statement: If $? \approx ?$, then $\angle DEF \cong \angle PQR$. (p. 112) $\angle PQR$, $\angle DEF$

Use the diagram at the right. (p. 124)

- **61.** If $m \angle 1 = 127^\circ$, find $m \angle 2$, $m \angle 3$, and $m \angle 4$. 53°, 53°, 127°
- **62.** If $m \angle 4 = 170^{\circ}$, find $m \angle 1$, $m \angle 2$, and $m \angle 3$. 170°, 10°, 10°
- **63.** If $m \angle 3 = 54^{\circ}$, find $m \angle 1$, $m \angle 2$, and $m \angle 4$. 126° 54° 126°

224

EXTRA PRACTICE for Lesson 4.1, p. 902

