Name: _____

Chapter 4: Congruent Triangles

Guided Notes

Geometry Fall Semester

Term	Definition	Example
triangle		
polygon		
sides		
vertices		

4.1 Apply Triangle Sum Properties

Classifying Triangles by Sides

scalene triangle	
isosceles triangle	
equilateral triangle	

acute triangle	
obtuse triangle	
right triangle	
equiangular triangle	

Classifying Triangles by Angles

interior angles		
exterior angles		
Theorem 4.1	The sum of the measures of the interior	
Triangle Sum	angles of a triangle is 180°.	
Theorem		
auxiliary lines		
Theorem 4.2	The measure of an exterior angle of a	
Exterior Angle	triangle is equal to the sum of the measures	
Theorem	of the two nonadjacent interior angles.	
corollary to a theorem		
Corollary to the	The acute angles of a right triangle are	
Triangle Sum	complementary.	
Theorem		

Examples:

Use the diagram at right for examples 1 and 2.

1. Classify ΔRST by its sides. (Use the distance formula)

2. Determine if ΔRST is a right triangle.

3. Use the diagram at the right to find the measure of $\angle DCB$.

4. The front face of the wheelchair ramp shown forms a right angle. The measure of one acute angle is eight times the measure of the other. Find the measure of each acute angle.

Term	Definition	Example
congruent figures		
corresponding parts		
Theorem 4.3 Third Angles Theorem	If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.	

4.2 Apply Congruence and Triangles

Properties of Congruent Triangles

Theorem 4.4 Properties of Congruent Triangles		
Reflexive	For any triangle <i>ABC</i> , $\triangle ABC \cong \triangle ABC$.	
Property of		
Congruent		
Triangles		
Symmetric	If $\triangle ABC \cong \triangle DEF$, then $\triangle DEF \cong \triangle ABC$.	
Property of		
Congruent		
Triangles		
Transitive	If $\Delta ABC \cong \Delta DEF$ and $\Delta DEF \cong \Delta JKL$,	
Property of	then $\Delta ABC \cong \Delta JKL$.	
Congruent		
Triangles		

Examples:

1. Write a congruence statement for the triangles. Identify all pairs of congruent, corresponding parts.

G G H

- 2. In the diagram, $QRST \cong WXYZ$.
- a). Find the value of x.

b). Find the value of y.

5. Given
$$\overline{FH} \cong \overline{JH}, \overline{FG} \cong \overline{JG},$$

 $\angle FHG \cong \angle JHG, \angle FGH \cong \angle JGH$

Prove $\triangle FGH \cong \triangle JGH$

Term	Definition	Example
Postulate 19 Side-Side-Side (SSS)	If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.	
Congruence Postulate		

4.3 Prove Triangles Congruent by SSS

Examples:

1. Write a paragraph proof.

Given: $\overline{FJ} \cong \overline{HJ}$ Point G is the midpoint of \overline{FH} Prove: $\Delta FGJ \cong \Delta HGJ$

2. Determine whether ΔPQR is congruent to the other triangles shown at right.

4.4 Prove Triangles Congruent by SAS and HL

Term	Definition	Example
included angle		
Postulate 20	If two sides and the included angle of one	
Side-Angle-	triangle are congruent to two sides and the	
Side (SAS)	included angle of a second triangle, then the	
Congruence	two triangles are congruent.	
Postulate		
right triangles	 legs- hypotenuse- side opposite- sides adjacent- 	
Theorem 4.5 Hypotenuse-Leg (HL) Congruence Theorem	If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.	

Examples:

1. Given: $\overline{JN} \cong \overline{LN}$, $\overline{KN} \cong \overline{MN}$ Prove: $\Delta JKN \cong \Delta LMN$

2. In the diagram *ABCD* is a rectangle. What can you conclude about $\triangle ABC$ and $\triangle CDA$.

CH. 4 Guided Notes, page 11

4. The entrance to a ranch has a rectangular gate as shown in the diagram. You know that $\triangle AFC \cong \triangle EFC$. What postulate or theorem can you use to conclude that $\triangle ABC \cong \triangle EDC$?

CH. 4 Guided Notes, page 12

4.5 Prove Triangles Congruent by ASA and AAS

Term	Definition	Example
included side		
Postulate 21 Angle-Side-Angle (ASA) Congruence Postulate	If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the triangles are congruent.	
Theorem 4.6 Angle-Angle-Side (AAS) Congruence Theorem	If two angles and a non-included side of one triangle are congruent to two angles and a non-included side of a second triangle, then the two triangles are congruent.	
flow proof		

Examples:

1. Can the following triangles be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.

c)

2. In the diagram, \overline{CF} bisects $\angle ACE$ and $\angle BFD$. Write a flow proof to show $\triangle CBF \cong \triangle CDF$.

3. You and a friend are trying to find a flag hidden in the woods. Your friend is standing 75 feet away from you. When facing each other, the angle from you to the flag is 72° , and the angle from your friend to the flag is 53° . Is there enough information to locate the flag?

4. You are working two spotlights for a play. Two actors are standing apart from each other on the edge of the stage. The spotlights are located and pointed as shown in the diagram. Can one of the actors move without requiring the spotlight to move and without changing the distance between the other actor?

Term	Definition	Example
congruent triangles		
	Two triangles are congruent if and only if	
Definition	their corresponding parts are congruent.	
of Congruent		
Triangles	This is also known as the Corresponding	
(CPCTC)	Parts of Congruent Triangles are Congruent	
	Theorem.	

4.6 Use Congruent Triangles

To show that a pair of corresponding parts of two triangles are congruent:

- 1. Prove the two triangles are congruent.
- 2. Use the definition of congruent triangles (CPCTC) to show the corresponding parts are congruent.

What can we say about SSA and AAA?		
SSA	SSA cannot be used as a proof of congruent triangles.	See page 247.
AAA	AAA cannot be used as a proof of congruent triangles.	AAA only proves the
	two triangles to be <u>similar</u> .	

Examples:

1. Given: $\angle 1 \cong \angle 2$, $\overline{AB} \cong \overline{DE}$ Prove: $\overline{DC} \cong \overline{AC}$

2. Given: $\angle SPT \cong \angle RQT$, $\overline{TS} \cong \overline{TR}$ Prove: $\overline{PR} \cong \overline{QS}$

Definition Example Term 4 Vertex Angle-5 Legsparts of an isosceles triangle 6 Base-7 Base Angles— Theorem 4.7 If two sides of a triangle are congruent, Base Angles then the angles opposite them are congruent. Theorem Theorem 4.8 If two angles of a triangle are congruent, Converse of Base then the sides opposite them are congruent. Angles Theorem Corollary to the If a triangle is equilateral, then it is **Base Angles** equiangular. Theorem Corollary to the If a triangle is equiangular, then it is Converse of Base equilateral. Angles Theorem

4.7 Use Isosceles and Equilateral Triangles

Examples:

1. In $\triangle FGH$, $\overline{FH} \cong \overline{GH}$. Name two congruent angles.

G F Н

2. Find the measures of $\angle R$, $\angle S$, and $\angle T$.

3. Find the values of x and y in the diagram.

4.8 Perform Congruence Transformations

Term	Definition	Example
transformation		
image		
translation		
Coordinate		
Notation for a		
Translation		
reflection		
line of reflection		
Coordinate		
Notation for a		
Reflection		
in the <i>x</i> -axis		
Coordinate		
Notation for a		
Reflection		
in the y-axis		
Coordinate		
Notation for a		
Reflection		
in the line $y = x$		
rotation		

center (point) of rotation	
	1. Clockwise
direction of rotation	2. Counterclockwise
angle of rotation	
congruence transformation	

Examples:

1. Name the type of transformation described in each picture.

2. Figure *ABCD* has the vertices A(1,2), B(3,3), C(4,-1), D(1,-2). Sketch *ABCD* and its image after the translation $(x, y) \rightarrow (x-4, y+2)$.

2. Reflect this figure in the x axis.

- 3. Graph \overline{JK} and \overline{LM} . Tell whether \overline{LM} is a rotation of \overline{JK} about the origin. If so, give the angle and direction of rotation.
 - a. J(3,1), K(1,4), L(-1,3), M(-4,1)

b. J(-2,1), K(-1,5), L(1,1), M(2,5)

